2013 IEEE Vehicular Networking Conference

Towards an Open Source IEEE 802.11p Stack:
A Full SDR-based Transceiver in GNU Radio

Bastian Bloessl*, Michele Segata*!, Christoph Sommer* and Falko Dressler*
*Computer and Communication Systems, Institute of Computer Science, University of Innsbruck, Austria
TSystems and Networks, Dept. of Information Engineering and Computer Science, University of Trento, Italy
{bloessl, segata, sommer, dressler}@ccs—labs .0rg

Abstract—We present the first steps towards an Open Source
simulation and experimentation framework for IEEE 802.11p
networks. The framework is implemented based on GNU Radio,
a real-time signal processing framework for use in Software
Defined Radio (SDR) systems. The core of the framework is a
modular Orthogonal Frequency Division Multiplexing (OFDM)
transceiver, which has been thoroughly evaluated: First, we show
that its computational demands are so low that it can be run
on low-end desktop PCs or laptops and thus, the transceiver is
also feasible to use in field operational tests. Secondly, we present
simulation results to highlight the transceiver’s capability to study
and debug PHY and MAC variants in a reproducible manner. We
show that the simulations match very well to a widely accepted
error model for IEEE 802.11p networks. Finally, we discuss
results from an extensive set of measurements that compare
our SDR-based transceiver with commercial grade IEEE 802.11p
cards. We made the framework available as Open Source to
make the system accessible for other researchers and to allow
reproduction of the results. This might also pave the way for
future proofing cars by means of fully reconfigurable radios.

I. INTRODUCTION

Inter-Vehicle Communication (IVC) is the basis for Vehicular
Ad Hoc Networks (VANETS), networks of cars communicat-
ing directly with each other and possibly with infrastructure
nodes [1]. Once successfully deployed, IVC is the basis for a
multitude of applications ranging from safety, e.g., intersection
collision warning systems [2], over efficiency, e.g., traffic
information systems [3], [4], to entertainment applications [5].
Besides the use of cellular networks such as UMTS or LTE for
IVC, Dedicated Short Range Communications (DSRC) based
on IEEE 802.11p are considered a key technology [6].

Two important steps towards the realization of these networks
were made: First, in 1999, the regulatory bodies ECC and FCC
reserved five and seven 10 MHz channels in the 5 GHz band
exclusively for VANETs in Europe and the U.S., respectively.
Secondly, the standardization of the IEEE 802.11p [7] PHY and
MAC layer has been completed. Higher layer protocols have
been standardized in the context of ETSI ITS G5, including
Decentralized Congestion Control (DCC) [8], and the Wireless
Access in Vehicular Environment (WAVE) communication
stack, including multi channel operation [9].

IEEE 802.11p combines the quality of service extensions
defined in IEEE802.11e and the OFDM PHY of IEEE
802.11a. To account for the high mobility and the challenging
environment in VANETSs, all timings of the IEEE 802.11a
were doubled, resulting in a channel bandwidth of 10 MHz.

978-1-4799-2687-9/13/$31.00 ©2013 |[EEE

Sticking very close to the successful IEEE 802.11a standard
has the obvious advantage that the same chips can be used for
applications in VANETSs and, thus, the costs can be, at least
in theory, reduced considerably.

Now experimental validation is needed and field tests are
currently ongoing in Europe and the U.S.

The current situation is that, on the one hand, DSRC radios
for practical experiments are either commercial grade solutions
developed for field tests, which are rather expensive and, most
importantly, do not allow to change parts of the PHY or MAC
of the underlying IEEE 802.11p implementation. Examples are
the Cohda Wireless MK2 or the Denso WSU. On the other
side of the spectrum, adapted stacks for the popular Atheros
chipset AR5414A-B2B (e.g., used in the Unex DCMA-86P)
have been developed in several projects. This allows to use very
cheap hardware solutions, but they are bound to the capabilities
of the chipset, and not fully validated in field tests. Finally,
one conclusion of the last Dagstuhl Seminar on IVC was that
the reproducibility of measurements with different hardware
platforms is very limited. All present researchers agreed that
a fully Open Source stack would be of huge benefit.

We close this gap by providing! an Open Source simulation
and experimentation framework for IEEE 802.11p for SDR
systems. We implemented the system for GNU Radio, a real-
time signal processing framework for SDR. In our experiments,
we relied on the widely used USRP N210 from Ettus Research.
The core of our framework is a modular OFDM transceiver,
which extends our previous work on an OFDM receiver [10],
by now supporting all four modulation schemes BPSK, QPSK,
QAM-16, and even QAM-64. The system is implemented fully
in software and runs on a typical laptop computer.

Given that the design goals for IEEE 802.11a were set to
support low mobility indoor environments, it is unclear if and to
what extent [EEE 802.11p allows robust and reliable communi-
cation in vehicular networks. As the properties of the PHY and
MAC implementation are easy to change in an SDR solution,
our system provides all necessary features to experiment with
protocol changes in a flexible lab environment. In particular,
our implementation supports to connect the transmitter and
receiver via a simulated channel within GNU Radio to study
the system behavior before performing real measurements.

Thttp://www.ccs-labs.org/projects/wime/

143

2013 IEEE Vehicular Networking Conference

In addition, our SDR based IEEE 802.11p transceiver can
be regarded as a first step towards SDR based systems to be
deployed in real cars. We believe this will be a necessary step
as the product cycle of typical cars is very long and installed
systems for IVC need to be able to be changed by means of
software updates only. With an SDR solution, even PHY and
MAC protocol updates become feasible.

Our main contributions can be summarized as follows:

e We present the first SDR based transceiver for IEEE
802.11p, which has been implemented fully in software in
GNU Radio (Section III). Performance measurements
confirm that our system runs even on simple laptop
computers without problems.

e Our system can be used for simulation of new PHY or
MAC versions by connecting transmitter and receiver
within GNU Radio (Section IV). We show that the
simulations match very well to a widely accepted error
model for IEEE 802.11p networks.

o We validated the SDR transceiver by comparing it with a
commercial grade Unex DCMA-86P2 radio (Section V).
Our measurement results indicate that the SDR solution
performs exactly as expected.

II. RELATED WORK

Experimental research in VANETSs can be done on many
different layers depending on which aspect of the transceiver
system is to be studied.

On the highest layers one can utilize hardware prototypes like
the Cohda Wireless MK2 or the NEC Linkbird IEEE 802.11p
system that was used in the CVIS project [11]. These solutions
implement the complete communication stack and, thus, lend
themselves well to study actual applications like safety and
efficiency systems, or information dissemination strategies like
adaptive beaconing. The MK2, for example, implements the
whole IEEE 802.11p stack, including the IEEE 802.11e based
Quality of Service (QoS) extensions and provides an SDK that
allows implementation of WAVE based applications. There are
also a wide variety of custom stacks, e.g., based on Atheros
AR5414A-B2B chipsets that are, however, not validated. The
drawback of these solutions is that the PHY and (at least parts
of) the MAC layer are implemented in hardware and thus fixed,
i.e., it is not possible to investigate alternative PHY and MAC
algorithms.

On the MAC layer, the impact of different channel access
schemes, i.e., the Distributed Coordination Function (DCF)
can be studied. This topic received great attention in the
WiFi research community and, since IEEE 802.11p is very
similar to IEEE 802.11a, the concepts can also be used in
VANETs. To experiment with MAC layer protocols, the
community came up with several approaches. The spectrum
ranges from systems that provide access to the timings, medium
access, and acknowledgement functionality [12], [13], up to
completely replacing the MAC with a fully programmable state
machine [14].

The physical layer represents the bottom of the commu-
nication stack, and is typically the most difficult to study
with commercial devices. Experimentation and testing of
new ideas and solutions is not possible, since algorithms are
implemented in hardware and thus fixed. SDR systems provide
the possibility to investigate the physical layer, since they
replace the transceiver chip with general purpose hardware
and therefore can encode, modulate, and transmit arbitrary
electromagnetic signals.

In terms of hardware, there are basically two architectures
for SDR systems that differ in where the signal processing
is implemented. First, everything can be implemented on a
Field-Programmable Gate Array (FPGA), like the well-known
WARP platform that was developed at Rice University [15] or
the OpenAirlnterface Express MIMO board of EURECOM [16].
Second, one can implement the signal processing on General
Purpose Processors (GPPs) of a normal PC. This approach
is used by Microsoft’s Sora platform [17] as well as the
Universal Software Radio Peripheral (USRP) of Ettus Research,
which is typically used with the GNU Radio signal processing
framework.

Since FPGAs are often the only chance to meet tough timing
constraints of today’s wireless standards they are often the
only option for experimentation with MAC protocols. Yet,
the strict deterministic timing of FPGAs comes at the price
of increased complexity of implementation. However, there
is also an approach between pure GPP and FPGA based
realizations: implementing only the channel access functionality
on the FPGA. This allows for standard compliant broadcast
transmissions while doing all signal processing on the CPU,
combining the advantages of both worlds.

In terms of software, there are several physical layer imple-
mentations for IEEE 802.11p. Mango Communications recently
released an IEEE802.11 reference design for their WARP
boards. Microsoft’s Sora also features an implementation of
IEEE 802.11, which is, however, not Open Source. The receiver
we presented in [10] provides another implementation that is
implemented completely on the PC and is thus well suited for
rapid prototyping.

III. TRANSCEIVER STRUCTURE

To enable experimental wireless research in VANETSs, we
implemented an SDR-based IEEE 802.11p transceiver. An SDR
system consists of a software part, where the signal processing
algorithms are implemented, and a hardware part that is
responsible for up and down conversion of the analog wave
form. On the software side, we implemented the transceiver
based on GNU Radio, a GPP based real-time signal processing
framework. On the hardware side, we used the Ettus Research
USRP N210 with a CBX daughter board, allowing us to operate
on the Intelligent Transportation Systems (ITS) frequency band
around 5.9 GHz. The FPGA image of the N210 takes care of
down sampling, filtering, and removing of the DC offset.

The transceiver software consists basically of send and
receive chains and code that switches between the two states.

144

2013 IEEE Vehicular Networking Conference

Socket PDU
Type: TCP Server
@ Host: pdus| (app in| app out|
Port: 52001 OFDM MAC OFDM Mapper
MTU: 10k phy out! in | Encoding: 0
Debug: Disable

UHD: USRP Sink
Samp Rate (Sps): 10M
ChO: Center Freq (Hz): 5.89G
ChO: Gain (dB): 10

FFT
FFT Size: 64
Forward/Reverse: Reverse
Window: window.rectangular...
Shift: Yes
Num. Threads: 1

OFDM Pilot
Debug: Disable

OFDM Cyclic Prefixer
FFT Length: 64

CP Length: 16

Length Tag Key:

Transmitter

Receiver

UHD: USRP Source
Samp Rate (Sps): 20M
ChO: Center Freq (Hz): 5.22G
Cho: Gain (dB): 30

Delay
Delay: 16

FFT
FFT Size: 64
Forward/Reverse: Forward
Window:
Shift: Yes
Num. Threads: 1

OFDM Equalize Symbols
Debug: Disable

Decimating FIR Filter
Decimation: 1
Taps: [1]*window_size

Divide

Decimating FIR Filter
in 1
Taps: [1]*window_size

OFDM Sync Short
Debug: Disable

T 800m
Max Samples: 5.2k
Min Plateau: 2

Socket PDU
Type: UDP Server
Host:

Port: 12345
MTU: 10k

OFDM Parse MAC
Debug: Enable

Figure 1. Overview of the transceiver structure in GNU Radio Companion.

A. Transmitter

An IEEE 802.11p transmitter for the N210 and GNU Radio
has already been presented by Fuxjiger [18]. Since the
transmitter was implemented partly in Python and based on
an incompatible version of GNU Radio that lacked many of
the recently introduced features that enable seamless packet-
based operation, we reimplemented it from scratch. Regarding
its use in a transceiver, our transmitter implementation also
has the important advantage that it supports variable packet
sizes and allows to specify the encoding on a per packet basis.
In contrast to the receive chain, there are nearly no design
decisions to make on transmitter side since modulation and
encoding are fully specified in the standard [19, Chapter 18].
The only parameter that we chose is the transition width of
the window function, which we set to 1. This window mainly
asserts that the output signal honors the spectral mask defined
in the standard and, thus, the signal decays fast in the frequency
domain, limiting adjacent channel interference.

An overview of the transmitter structure as exposed to the
GNU Radio Companion is depicted in the top half of Figure 1.
The Companion provides a graphical user interface to setup and
configure signal processing flow graphs. The implementation of
the transmitter is straightforward and includes mainly encoding,
Fast Fourier Transformation and addition of the cyclic prefix.

A major concern regarding the transmitter might be the
carrier sensing mechanism, which is fundamental for both

unicast and broadcast transmissions. IEEE 802.11p uses the
extended DCF defined in the IEEE 802.11e amendment, which
adds support for QoS. Due to latencies incurred by the
communication between PC and the USRP it is not possible
to implement the carrier sensing logic in software, since this
introduces a large blind spot between the time the medium
is sensed and when it is finally accessed. This issue can,
however, be circumvented by implementing the CSMA/CA on
the FPGA, which is possible since the SDR has an on-board
flash where it can store a frame and handle the channel access
in hardware. A basic CSMA implementation for the N210
with a non standard PHY that demonstrates this possibility has
been presented in [20].

B. Receiver

On the receiver side we build on our implementation pre-
sented in [10]. In contrast to the transmitter, the performance of
the receiver is crucial since it has to catch up with the incoming
sample stream. The required computational speed is achieved
with the help of Single Instruction Multiple Data (SIMD)
instructions as provided by GNU Radio’s Vectorized Library of
Kernels (VOLK) [21]. Instead of iterative calculation, SIMD
instructions act on vectors of data and thus, provide a significant
speed up.

Our receiver has a modular and easy to use structure
as depicted in the bottom half of Figure 1. At first, the

145

2013 IEEE Vehicular Networking Conference

autocorrelation coefficient is calculated in order to detect the
cyclic pattern of the short preamble of OFDM frames, which is
used for frame detection by the OFDM Sync Short block. The
following blocks are responsible for frame alignment, frequency
offset correction, channel estimation and actually decoding the
payload. On the receiver side the modularity is important
since we expect a main application of the framework to be the
investigation and comparison of different receive algorithms,
for instance different channel estimation strategies. With a
modular concept it is easy to exchange algorithms and study
the impact on the performance. For the evaluations presented
in this paper, we also implemented support for QAM-16 and
QAM-64 encodings. This means that meanwhile all modulation
and coding schemes defined in the standard are supported.

As with the transmitter, the receiver experiences communica-
tions latency between PC and USRP. Unfortunately, this makes
it impossible to comply with the tough timing constraints of
RTS/CTS and acknowledgement frames that are used for unicast
transmissions. If unicast transmissions have to be investigated
it is possible to work around this limitation by disabling retries
due to missing acknowledgements and by setting the RTS/CTS
threshold to infinity. However, such investigations would most
likely be better served with full FPGA based solutions like
WARP. Nevertheless, a vast array of VANET applications
do not use acknowledged unicast transmission. Rather, the
broadcast characteristic of the medium is exploited to effectively
disseminate information. These broadcast transmissions are
fully supported by our framework.

C. Merge Chains

To create a transceiver out of separate receive and transmit
chains we need to address RX/TX switching. When the N210
is operating in half-duplex mode, the device is by default
in receive mode and switches on demand when samples are
streamed to the device. After a burst of samples is streamed
to the device, the SDR does not switch back to receive mode
immediately, but waits for a timeout since the sample stream
might just be stalled. Due to this timeout, immediate responses
like acknowledgements might be missed. We circumvented
this issue by implementing a means for GNU Radio to signal
the end of a frame, forcing the device back to receive mode.

To underline the functionality and the applicability of the
transceiver as a WiFi system, we connected it to a TAP interface,
a virtual Ethernet device. This way, the transceiver is seamlessly
connected to the Linux TCP/IP stack (or a custom ITS G5 or
WAVE stack) and can be used like a standard network interface
card. Furthermore, we record sent and received traffic in PCAP
format. PCAP is the de-facto standard for packet capturing
and allows to investigate the traffic with network monitoring
software like Wireshark.

D. Computational Performance

As a first performance metric of the transceiver we study its
computational complexity and real-time capabilities. The point
we want to make here is that an average PC can easily process
the incoming sample stream and still has lots of spare resources.

Component Type
CPU Intel Core i7-2600 CPU 3.40GHz
RAM 16 GB
NIC RTL-8169 Gigabit Ethernet
Operating System Ubuntu 12.04 LTS, 64 bit
GNU Radio Version 3.7
SDR Ettus Research N210 revision 4
Daughterboard CBX

Table I

OVERVIEW OF THE MOST IMPORTANT COMPONENTS OF OUR TEST SYSTEM.

This fact is important since it shows that the transceiver in its
current state does not hit performance limits of typical computer
systems and can thus, decode packets without systematic errors
that occurred if the transceiver would not be able to cope with
the incoming sample stream in real-time.

By default GNU Radio starts one thread for every block in
the flow graph. Each of these blocks monitors performance
metrics while the transceiver is running and exposes them so
that they can be accessed live from other applications [22].
The monitored performance metrics include average utilization
of input and output queues and consumed CPU time. We im-
plemented a simple application that connects to the transceiver
and logs all performance metrics in CSV format.

Note that the computational demands are only interesting
for the receiving part of the transceiver. The transmitter is
occasionally generating a sample stream that is sent to the
SDR. Here, it is only important that the stream does not stall,
which would corrupt the physical wave form. This is, however,
no problem in practice.

To show the low computational demands, we connect a PC
with a Unex DCMA-86P card via cable and attenuators to
the USRP and send BPSK 1/2 encoded, 133 B packets with
a rate of 30 packets per second. We picked this packet size
since it corresponds to the size of an unsigned Cooperative
Awareness Message (CAM) [8]. For the sake of brevity, in this
paper we only show the results regarding this particular packet
size. We also performed the experiments with different sizes
to make sure that none of the statements in this work depends
on such parameter. We configure the transmission power and
attenuators so that the Signal to Noise Ratio (SNR) is around
40dB so that packet loss is negligible. The main components
of the SDR system as well as the PC are listed in Table 1.

Figure 2 shows the average utilization of the input queues.
Some of the blocks are listed twice in the graph since they
have more that one input queue. At first, we see that none of
the blocks backlogs an excessive amount of samples over time.
Furthermore, we also investigated the variance of utilization:
it is minimal, resulting in no overruns, i.e., drop of samples
caused by too slow processing of the incoming samples.

Figure 3 provides a slightly different view on the system
and shows the distribution of the aggregated work time over
all blocks. While the first plot highlights bottlenecks where
samples might queue up, the second blocks identifies heavy
hitters in terms of required computation. In this plot, we clearly

146

2013 IEEE Vehicular Networking Conference

0.3

O packet based E stream based

sync long

0.2
sync long

Avg. Input Queue Utilization

=1
)
g
e}
<
K
= 8 ~
= 1y =
2 2 < 3 op
n O =1 B <
i~ . G -
© o = S .
=] g3z ?os P ooy,
=) = g .0 > 8 @ QB * 2 g
oz E o= ©0 5] . oK = 9
= = T & = 2 o0 g2 3 o=
S Z EE Zog o= & = = g3 T«
Q.H—‘:E>£: > ‘G-;goo
T =38 2 3T 3 9] £ g8 0 &
= ° =< 9 E 238 38< &

0

Function Block

Figure 2. Average queue size of individual blocks of the receiver.

% — O packet based @ stream based
=
=RTe)
ISR =
g -
) =
AR £ %
> go Q S E g —
+ o0 B=EE
ERTE Z & oW oE S 4, 2 28 % o 2
- w 2 9 g2 2 3 © 3 = = 3]
.= v & W 35 <=] < o
S - = 8 == o & oW B o o® 2
= = DD;:;U [SEERS] >
oo E 2 o2 g e =T 5 F s 2 9
= — 5 g S E:‘ﬂ 8E> é“: Q, ‘&)
E EEEZEEEEEE ¢ -
= © S B 85 g o,
e = S = g
= O - D =
- 2 mvﬁ

Function Block

Figure 3. Total work time consumed by individual blocks of the receiver.

see that most of the time is spent in the USRP block, which
interfaces the with the actual hardware.

To further reason about the performance and the limits of
the system, we need to consider its structure. The first part of
the receiver is responsible for frame detection and works on
all incoming samples. Since this part operates on all samples
it depends only on the sample rate and thus, on the bandwidth
of the signal. These blocks are shaded in Figure 3 and scale
linearly with the bandwidth of the signal, i.e., the computational
demand will double when investigating 20 MHz signals as
opposed to 10 MHz frames as in IEEE 802.11p.

Once a frame is detected, the second part of the transceiver is
responsible for decoding the frame. The most computationally
complex tasks in this part are frame alignment (we employ
matched filtering), channel estimation, and Viterbi decoding.
The complexity of the decoding process increases with packet

size, and grows linearly with the number of frames per second.

The results show that there is a trade off between the

number of packets per second and the bandwidth of the signal.

Furthermore, in the given setup we see that there are resources
left on a typical PC system, so that more advanced and complex
receive algorithms can be implemented. To verify this, we also
ran the transceiver on a Dell Latitude E6220 laptop with an
Intel i5 processor and 8 GB RAM without any performance
problems, thus, assuring that the system is also suitable for
field tests.

IV. SIMULATION

Since we now have a complete transceiver system in
GNU Radio, we can use it to study the performance of the
employed algorithms by means of simulation. A simulative
performance evaluation is desirable since it allows to repro-
duce the experiments and also to compare the systems with
independent research results. To show the correctness of the
implementation and that we achieve reasonable performance
we conducted simulations over an Additive White Gaussian
Noise (AWGN) channel. Again, we set the packet size to
133 B and send 10000 packets each, for different encodings
and SNRs.

The simulative determined packet delivery ratios are shown
in Figure 4. The error bars depict the confidence intervals
with a confidence level of 0.95. We can see that the curves
corresponding to the different encodings are reasonable in the
sense that higher order modulations require a higher SNR.

More interesting is, however, the comparison with inde-
pendent measurements and simulations. In [23], Mittag et al.
implement a similar transceiver system in the discrete event
simulator ns3. This implementation was used for detailed
simulations of physical layer effects in WiFi networks. This
transceiver was not real-time capable and not intended for use
in an SDR environment. However, to show the correctness
of the implementation and prove that their implementation
produces meaningful results, the authors also present packet
error curves, which match very well with the results presented
in Figure 4.

In [24], Pei and Henderson derive a higher level packet error
rate model for WiFi networks, which is well accepted an heavily
used in ns3. The model is justified theoretically and compared
to real measurements in the testbed of Carnegie Mellon
University. Again, the model as well as the measurements
match very well with our simulation results.

We think that simulations in an SDR environment that can
be backed up with real over the air measurements have a
high potential. There are two major use cases where they are
particularly beneficial. First, since one important application
for the transceiver is the investigation and comparison of
different receive algorithms, the simulation can be used to
validate implementation of these algorithms under controlled
circumstances. Once the implementations of the algorithms
are validated by simulations, the very same systems and
implementations can be used for over the air measurements.

The second major use case for simulation is the investigation
of wireless channels with different characteristics. There is a
large body of channel measurements and characterizations in
the VANET community. Most of the measurements are made
with sophisticated channel sounders that allow to measure the
characteristics in great detail. That way, features like delay
spread and coherence time are measured and different channel
models that capture the characteristics of different environments
are proposed [25]. These channels can be easily implemented
in GNU Radio and used to study the performance of different
receive algorithms under reproducible conditions.

147

2013 IEEE Vehicular Networking Conference

Finally, simulations can be used to derive error curves that
might in turn serve as input for network simulators, albeit under
the restrictions of the applicability of error curves discussed
in [26].

V. PERFORMANCE COMPARISON WITH COMMERCIAL IEEE
802.11p DEVICES

Even though we showed in the above mentioned simulations
that the implemented algorithm works nicely in theory, we still
owe a proof that the SDR system also works well with real
hardware and produces results that are similar to commercial
IEEE 802.11p devices. This is a crucial part for the evaluations
since it shows that the implementation is indeed usable for
research: producing reasonable results not only by means
of simulations but also over the air with all the hardware
impairments like frequency offsets, clock drifts and imperfect
channel filters.

In [10], we already presented these measurement results
for the receiver. To also provide these error curves for the
transmitter, we connected the USRP via cable and attenuators
to a Unex DCMA-86P2, a commercial IEEE 802.11p capable
WiFi card. These cards are based on an Atheros transceiver chip
and can be operated in IEEE 802.11p mode on the frequency
band reserved for ITS applications (with minor modifications to
the Linux kernel like removal of regulatory restrictions and the
implementation of an interface to change the signal bandwidth
to 10 MHz).

All measurements are performed on channel 172 with a
center frequency of 5.86 GHz, again a packet size of 133 B,
and a rate of 30 packets per second. Like in the case of the
simulations, we send 10000 packets per configuration. At first,
we investigate the transmit side and send frames with the SDR
and receive them with the commercial WiFi card. The resulting
error curves are depicted in Figure 5. The SNR is measured on
the receiving side by the Unex devices. When put in monitor
mode, the cards annotate each received frame with metadata
including signal and noise levels.

To directly compare the SDR with a commercial device, we
repeated the same measurements with another Unex device as
sender. Since we experienced deviating results with different

WiFi cards, we used the same receiver for both measurements.
The error curves of these measurements are shown in Figure 6.

We can see that the results for both devices match very closely
except for the QAM-64 3/4 encoding where we experience
worse performance with the SDR. Since we do not see such
an effect in simulations and since the systems works well
for the other cases, we are reasonably sure that the sample
stream we generate is correct. Furthermore, we experienced
no underruns, i.e., we were able to stream the samples to the
device so that the device did not stall which would destroy the
physical wave form. With these observations, we expect the

deviation in the results to be caused by hardware imperfections.

Candidates that might cause such a behavior are oscillator drift
and, more likely, non linearities in the amplifier that might
slightly disturb the signal, which might lead to packet errors
especially in higher order modulations.

— BPSK1/2 —— QPSK1/2 —— QAMI6 1/2 QAMG64 2/3
—— BPSK 3/4 —— QPSK 3/4 —— QAMIG6 3/4 QAMG64 3/4
— —

]

[}

S

£

g

>

ze |

[en)

Q

&

B

o

= o

<

~
e \ \

0 20 25

SNR (dB)

Figure 4. Simulative determined packet delivery ratio of 133 B sized packets

over an AWGN channel.

BPSK 1/2
BPSK 3/4

— QPSK 1/2
—— QPSK 3/4

— QAMI61/2
—— QAMI16 3/4

QAMS64 2/3
QAMG4 3/4

0.5

Ratio of Received Packets
0.25

SNR (dB)

Figure 5. Packet delivery rate of frames sent from the SDR and received with
a commercial device. The devices are connected via cable and the packet size

is 133 B.
— BPSK 1/2 —— QPSK1/2 —— QAMI6 1/2 QAMS64 2/3
—— BPSK3/4 —— QPSK3/4 —— QAMI63/4 QAMG64 3/4
— — _—
wn
2
[}
S
£
el
£
F
(S ew)
Q
=
B s
o N
B2 o
<
ot
e I I

20 25

Figure 6. Packet delivery rate for two commercial grade IEEE 802.11p devices.
The devices are connected via cable and the packet size is 133 B.

148

2013 IEEE Vehicular Networking Conference

VI. CONCLUSION

We presented an IEEE 802.11p simulation and experimen-
tation framework. We made all code available as Open
Source software to allow reproduction of our results and to
make the system accessible for use and for study by fellow
researchers. We think that the system is accessible since it
is based on GNU Radio, which has a big community and is
furthermore known to work with affordable, well-known, and
wide spread hardware from Ettus Research. The system can
be used to investigate and compare different physical layer
algorithms without limitations and the full IEEE 802.11p stack
for broadcast transmissions. This system can also serve as a
first step towards an Open Source WAVE or ITS G5 stack,
which was identified by the community as a requirement for
conducting reproducible field trials.

Another main benefit of our system is that it is implemented
in an SDR environment and thus, the same code can be used
to simulate as well as actually transmit and receive frames
over the air. The core of the framework is an OFDM IEEE
802.11a/g/p transceiver that we evaluated with an extensive
set of performance measurements. We studied its runtime
performance, which is crucial for real time systems and we
investigated packet error rate curves and validated it with
commercial devices. The results show that the performance of
the transceiver matches commercial cards.

REFERENCES

[1] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk, “A Survey of
Inter-Vehicle Communication Protocols and Their Applications,” IEEE
Communications Surveys and Tutorials, vol. 11, no. 2, pp. 3-20, 2009.

[2] S. Joerer, M. Segata, B. Bloessl, R. Lo Cigno, C. Sommer, and F. Dressler,

“To Crash or Not to Crash: Estimating its Likelihood and Potentials

of Beacon-based IVC Systems,” in 4th IEEE Vehicular Networking

Conference (VNC 2012). Seoul, Korea: IEEE, November 2012, pp.

25-32.

C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve,

“Data Aggregation and Roadside Unit Placement for a VANET Traffic

Information System,” in 5th ACM International Workshop on Vehicular

Inter-Networking (VANET 2008). San Francisco, CA: ACM, September

2008, pp. 58-65.

[4] C. Sommer, O. K. Tonguz, and F. Dressler, “Traffic Information
Systems: Efficient Message Dissemination via Adaptive Beaconing,”
IEEE Communications Magazine, vol. 49, no. 5, pp. 173-179, May
2011.

[51 J.-S. Park, U. Lee, S. Y. Oh, M. Gerla, and D. S. Lun, “Emergency
related video streaming in VANET using network coding,” in 3rd ACM
International Workshop on Vehicular Ad Hoc Networks (VANET 2006).
Los Angeles, CA: ACM, September 2006, pp. 102-103.

[6] F. Dressler, F. Kargl, J. Ott, O. K. Tonguz, and L. Wischhof, “Research

Challenges in Inter-Vehicular Communication - Lessons of the 2010

Dagstuhl Seminar,” IEEE Communications Magazine, vol. 49, no. 5, pp.

158-164, May 2011.

“Wireless Access in Vehicular Environments,” IEEE, Std 802.11p-2010,

July 2010.

European Telecommunications Standards Institute, “Intelligent Transport

Systems (ITS); Decentralized Congestion Control Mechanisms for

Intelligent Transport Systems operating in the 5 GHz range; Access

layer part,” ETSI, TS 102 687 V1.1.1, July 2011.

[9] “IEEE Trial-Use Standard for Wireless Access in Vehicular Environments
(WAVE) - Multi-channel Operation,” IEEE, Std 1609.4, November 2006.

[3

=

[7

—

[8

[t

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

149

B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE 802.11a/g/p
OFDM Receiver for GNU Radio,” in ACM SIGCOMM 2013, 2nd ACM
SIGCOMM Workshop of Software Radio Implementation Forum (SRIF
2013). Hong Kong, China: ACM, August 2013, pp. 9-16.

A. Festag, R. Baldessari, W. Zhang, and L. Le, “CAR-2-X Communi-
cation SDK - A Software Toolkit for Rapid Application Development
and Experimentations,” in IEEE Vehicular Networking and Applications
Workshop (ICC Workshops 2009). Dresden, Germany: IEEE, June 2009,
pp. 1-5.

M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald, “SoftMAC
- Flexible Wireless Research Platform,” in 4th Workshop on Hot Topics
in Networks (HOTNETS 2005). College Park, ML: ACM, November
2005.

M.-H. Lu, P. Steenkiste, and T. Chen, “Using Commodity Hardware
Platform to Develop and Evaluate CSMA Protocols,” in 3rd ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization (WiNTECH 2008). San Francisco, CA:
ACM, September 2008, pp. 73-80.

G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and I. Tinnirello,
“MAClets: Active MAC Protocols over Hard-Coded Devices,” in 8th
ACM International Conference on Emerging Networking Experiments
and Technologies (CoNEXT 2012). Nice, France: ACM, December
2012, pp. 229-240.

A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and E. W.
Knightly, “WARP: A Flexible Platform for Clean-Slate Wireless Medium
Access Protocol Design,” ACM SIGMOBILE Mobile Computing and
Communications Review (MC2R), vol. 12, no. 1, pp. 56-58, January
2008.

P. Agostini, R. Knopp, J. Hérri, and N. Haziza, “Implementation and
Test of a DSRC Prototype on OpenAirInterface SDR Platform,” in /EEE
ICC 2013, Workshop on Emerging Vehicular Networks. — Budapest,
HUNGARY: IEEE, June 2013.

K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu,
W. Wang, and G. M. Voelker, “Sora: High Performance Software Radio
Using General Purpose Multi-core Processors,” Communications of the
ACM, vol. 54, no. 1, pp. 99-107, January 2011.

P. Fuxjdger, A. Costantini, D. Valerio, P. Castiglione, G. Zacheo, T. Ze-
men, and F. Ricciato, “IEEE 802.11p Transmission Using GNURadio,” in
6th Karlsruhe Workshop on Software Radios (WSR), Karlsruhe, Germany,
March 2010, pp. 1-4.

“Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” IEEE, Std 802.11-2012, 2012.

A. Puschmann, P. Di Francesco, M. A. Kalil, L. A. DaSilva, and
A. Mitschele-Thiel, “Enhancing the Performance of Random Access
MAC Protocols for Low-cost SDRs,” in 8th International Workshop on
Wireless Network Testbeds Experimental Evaluation and Characterization
(WINTECH 2013). Miami, FL: ACM, September 2013.

T. Rondeau, N. McCarthy, and T. O’Shea, “SIMD Programming in GNU
Radio: Maintainable und User-Friendly Algorithm Optimization with
VOLK,” in Conference on Communications Technologies and Software
Defined Radio (SDR’12). Brussels, Belgium: Wireless Innovation Forum
Europe, June 2012.

T. W. Rondeau, T. O’Shea, and N. Goergen, “Inspecting GNU Radio
Applications with ControlPort and Performance Counters,” in ACM
SIGCOMM 2013, 2nd ACM SIGCOMM Workshop of Software Radio
Implementation Forum (SRIF 2013). Hong Kong, China: ACM, August
2013, pp. 65-70.

J. Mittag, S. Papanastasiou, H. Hartenstein, and E. G. Strom, “Enabling
Accurate Cross-Layer PHY/MAC/NET Simulation Studies of Vehicular
Communication Networks,” Proceedings of the IEEE, vol. 99, no. 7, pp.
1311-1326, July 2011.

G. Pei and T. R. Henderson, “Validation of OFDM Error Rate Model in
ns-3,” Boeing Research & Technology, Tech. Rep., 2010.

G. Acosta-Marum and M. Ingram, “Six Time- and Frequency-Selective
Empirical Channel Models for Vehicular Wireless LANs,” IEEE Vehicular
Technology Magazine, vol. 2, no. 4, pp. 4-11, December 2007.

M. Segata and R. Lo Cigno, “Simulation of 802.11 PHY/MAC: The quest
for accuracy and efficiency,” in 9th IEEE/IFIP Conference on Wireless
On demand Network Systems and Services (WONS 2012). Courmayeur,
Italy: IEEE, January 2012.

